수제비 빅데이터분석기사[필기] 생오표

수제비 빅데이터분석기사「필기」 제4판 독자를 위한 정오표입니다.

수제비 빅데이터분석기사[필기] 정오표(제4판)

페이지	위치	수정 전	수정 후
p.1-124	1번 해설	비휘발적(Volatile)	비휘발적(Non-Volatile)
p.2-65	③ 최반수(Mode)	8개의 데이터가 있는 집합에서 <mark>평균값</mark> 계산	8개의 데이터가 있는 집합에서 <mark>최빈수</mark> 계산
p.2-79	下丑	제곱에 비례 $(s^2 \propto w_i)$ 함	제곱에 비례 $(s^2 \propto w_i^2)$ 함
p.2-80	확률의 계산	$p(A) = \frac{n_A}{n_B}$	$p(A) = \frac{n_A}{n_S}$
p.2-85	이산확률변수	f(x) : 확률 질량 함수	f(x) : 확률 밀도 함수
p.2-92	개념 박살내기	확률 질량 함수	누적 질량 함수
p. 2-129, 2-132	잠깐! 알고가기	기각역이란 대립가설이 맞을 때 그것을 받아들이는 확률을 의미한다.	기각역은 귀무가설을 기각하는 통계량의 영역이다.
p.2-146	4번 ③	③ 기각역이란 대립가설이 맞을 때 그것을 받아들이는 확률을 의미한다.	③ 기각역은 귀무가설을 기각하는 통계량의 영역이다.
p.2-164	48번 해설	· 모표준편차가 알려져 있지 않으므로 ~ 이용하여 계산한다.	· 모표준편차(σ=16)을 이용하여 계산한다.
p.3-63	下丑	초평면의 법선 벡터의 <mark>전차</mark> 행렬	초평면의 법선 벡터의 <mark>전치</mark> 행렬
2.00	16번 ④번	④ 시그모이드 함수 입력값이 0일 때, 미분값은 0이다.	④ 시그모이드 함수 입력값이 0일 때, 미분값은 0.25이다.
p.3-89	항목 및 해설	시그모이드 함수 . 입력값이 0일 때, 미분값은 0이다.	시그모이드 함수 . 입력값이 0일 때, 미분값은 0.25이다.
p.4-28 p.4-97	8번 ④ 5번 ④	④ 독립변수의 개수가 <mark>다른</mark> 모형을 평가 ~	④ 독립변수의 개수가 <mark>많은</mark> 모형을 평가 ~
p.5-13	70번 ①	① 특이도: 7/10, 정밀도: 5/11	① 특이도: 14/17, 정밀도: 5/8
p.5-20	39번 해설	$P = \binom{n}{1} p^k (1-p)^{n-k} = \binom{3}{2} p^k (1-p)^{n-k}$	$P = \binom{n}{1} p^k (1-p)^{n-k} = \binom{3}{1} 0.5^k (1-p)^{n-k}$
p.5-27	80번 문제 그림	TP FN FP TN	TP FP FN TN
p.5-53	64번	64 다음 중 <mark>분포</mark> 시각화의 유형 <u>으로</u> ~	64 다음 중 비교 시각화의 유형으로 ~
p.5-75	70번 해설	· 특이도(Specificity)=TN/(TN+FP)= 70/(70+30)=70/100= 7/10 · 정밀도(Precision)= TP/(TP+FP) = 25/(25+30)=25/55=5/11	· 특이도(Specificity)=TN/(TN+FP)= 70/80=14/17 · 정밀도(Precision)= TP/(TP+FP) = 25/(25+15)=25/40=5/8
p.5-76	2회 정답	43. 3, 69. 4	43번. ②, 69. ①