2022 빅데이터분석기사[실기] 정오표

2022년도 빅데이터분석기사「실기」 제1판 1쇄 독자를 위한 정오표입니다.

2022 빅데이터분석기사[실기] 정오표(제1판 1왜 발앵)

페이지	위치	수정 전	수정 후
		연산자 내용	연산자 내용
작업형 1-6	上丑	! 두 개의 ~ 반환하는 연산자	! 반대 논릿값을 반환하는 not 연산자
작업형 1-18	학습 point	· 4개의 열과 3개의 행으로 ~	· 4개의 열과 4개의 행으로 ~
작업형 1-31	上丑	· ~ 행은 세 명의 자료 입력값을 절댓값으로 반환하는 사용자 정의 함수를 ~	· ~ 행은 네 명의 자료 두 입력 값의 차를 반환하는 사용자 정의 함수를 ~
작업형 2-5, 6	上	header 기본값은 FALSE	header 기본값은 TRUE
작업형 2-18	 中丑	~ 6보다 작거나 같으면 "S"	~ 5보다 작거나 같으면 "S"
작업형 2-29	 19번 문제	~ 값으로 25번째 백분위 수 ~ 수는 무엇인가?	~ <mark>값은</mark> 무엇인가?
작업형 2-50	中 본문	R의 scale 함수에서 center 값을 최댓값	R의 scale 함수에서 center 값을 최소값
작업형 2-92	中丑	cor TRUE 공분산 행렬 사용 FALSE 상관행렬 사용(기본값)	cor TRUE 상관행렬 사용(기본값) FALSE 공분산 행렬 사용
작업형 2-93	上丑	cor = FALSE, # 상관행렬을 사용	cor = FALSE, # 공분산 행렬을 사용
작업형 2-98	上, 中 본문	다중 선형 회귀 분석에서는 <mark>하나의</mark> 독립변수에 따른 ~ <mark>하나의</mark> 독립변수와 ~	다중 선형 회귀 분석에서는 2개 이상의 독립변수에 따른 ~ 2개 이상의 독립변수와 ~
작업형 2-123	上丑	test = valid_x, cl = train_y, k = i Accuracy가 0.75로 감소하였음을~	test = valid_x, cl = train_y, k = I) Accuracy가 0.77로 감소하였음을~
작업형 2-124	下丑	virginica에 대한 Sensitivity(민감도)가~	versicolor에 대한 Sensitivity(민감도)가~
작업형 2-166	2번대태(#		[데이터 세트] https://www.kaggle.com/camrugent/california-housing-prices
		> idx <- sample(x= c("train", "test"), + size=nrow(Boston),	> dshousing <- read.csv("c:/data/Housing.csv")
		+ replace=TRUE, prob=c(0.8,0.2)) > ds train <- Bostonfidx=="train".]	> nrow_end <- nrow(dshousing) * 0.8 > ds_train <- dshousing[c(1:nrow_end),]
		> ds_test <- Boston[idx=="test",]	· nrow 함수를 이용하여 첫 행부터 80%까지의 행을
	2번 해설	· 데이터 세트를 8:2로 분할한 후 ds train 변수에 훈련 데이터 생성하고, ds_test 변수에 평가 데이터 생성한다.	· frow 업무를 이용하여 첫 영무터 60%까지의 영을 추출하여 ds_train에 저장한다. > median_train <-median(ds_train\$total_bedrooms,
		> median_train <- median(ds_train\$tax) > org_sd <- sd(ds_train\$tax)	+ na.rm = TRUE) > org_sd <- sd(ds_train\$total_bedrooms, na.rm = TRUE)
		> ds_train\$tax[is.na(ds_train\$tax)] <- median_train > trans_sd <- sd(ds_train\$tax)	> ds_train\$total_bedrooms[is.na(ds_train\$total_bedrooms)] <- + median_train > trans_sd <- sd(ds_train\$total_bedrooms)
작업형 2-168	1번 해설	1번 문제의 해설	작업형 3-27페이지 14번 문제 해설로 변경
작업형 2-172	44144	dt_airquality <- airquality[c(1: nrow(airquality*0.9)),] + mean(dt_airquality\$Ozone, na.rm = TRUE)	dt_airquality <- airquality[c(1: (nrow(airquality)*0.9)),]
(11.19)	4번해설	+ na.rm = TRUE) (삭제) 11 다음은 ~ 8월 21일의 Ozone 값을 구하시오.	+ mean(dt_airquality\$Ozone, na.rm = TRUE) 11 다음은 ~ 8월 20일의 Ozone 값을 구하시오.
작업형 2-176			> a <- airquality[airquality\$Month == 8
(11.19)	11번해설	+ a <- airquality[airquality\$Month == 8 [1] 44	Ozone
자연형 2 177			112 44 3 다음은 mtcars ~ 자동차의 비율을 구하시오.
작업형 2-177 작업형 2-181	<u> 3번 문제</u> 20번 문제	3 다음은 mtcars ~ 자동차의 <mark>백분율(%)을</mark> 구하시오. "~상위 3위인 국가(country_abrv)를 <mark>선택하고 이 국가들~</mark> "	3 나눔은 mtcars ~ 사용자의 미율을 구하시오 "~상위 3위인 국가(country_abrv)를 하나 선택하고 이 국가의~"
직압형 2-182(11.22)	- 20년 문제 4번 정답	04. 10.62931	04. 10.36634
	20번 해설 20번 정답	filter(df_fifa_point >= 1765.05)	filter(total_points >= 1765.05)
		country_abrv 1 GER 2 ITA 3 SUI	country_abrv 1 GER 2 GER 3 GER
작업형 2-182		GER(독일), ITA(이탈리아), SUI(스위스)이다.	GER(독일)이다.
		c('GER', 'ITA', 'SUI')) %>% 348.098	('GER')) %>% 421.5051
		20. 348.098	20. 421.5051
	1번 해설 下	confusionMatrix(y_v\$Churn, predict_rf)	confusionMatrix(predict_rf, y_v\$Churn)
	1번 핵性斧 下	~ 대략 80.2%의 예측 정확도를 보임	~ 대략 80.9%의 예측 정확도를 보임
		confusionMatrix(y_v\$Churn, predict_svm) Reference	confusionMatrix(predict_svm, y_v\$Churn) Reference
작업형 2-184		Prediction No Yes	Prediction No Yes
(11.19)		No 758 68 Yes 145 154	No 757 69 Yes 161 138
		Accuracy: 0.8107 95% CI: (0.7865, 0.8332)	Accuracy: 0.7956 95% CI: (0.7708, 0.8188)
		No Information Rate: 0.8027 P-Value [Acc > NIR]: 0.2636 Kappa: 0.4715	No Information Rate: 0.816 P-Value [Acc > NIR]: 0.9633 Kappa: 0.4191
작업형 2-186 (11.19)	ביות וויי	md_step <- Im(mpg ~ drat + gear + carb, d_train)	md_step <- Im(mpg ~ drat + wt + gear + carb, d_train)
	2번 해설	rmse <- sqrt(mean(d_train\$mpg - pred)^2)	rmse<-sqrt(mean((d_test\$mpg - pred)^2))
작업형 3-3 (11.19)	<u> 2번 정답</u> 11번 문제	[1] 1.728558 본인 소유의 주택 가격에서 상위 50개의 데이터에 대하여 최솟값으로 변환한 후 타운별 1인당 범죄율 값이 1 이상인 데이터를 구하시오.	[1] 3.674629 상위 50개의 MDEV 값을 상위 50개의 MDEV 값의 최솟값으로 변 환한 후 CRIM이 1을 초과하는 값에 대한 CRIM의 평균을 구하시오
작업형 3-6(11.19)	11번 문제	(~ 1.5 표준편차 <mark>이하</mark> 이거나 <mark>이상인</mark> 값으로~)	(~ 1.5 표준편차 <mark>미만</mark> 이거나 <mark>초과인</mark> 값으로~)
작압형 3-9(11.22)	13번 문제	(1 : 20 ~ 40세, 2 : 41 ~ 60세, 3 : 60세 이상) 14. 다음은 iris 데이터 세트이다. 주어진 데이터를 이용하여	(1 : 20 ~ 40세, 2 : 41 ~ 59세, 3 : 60세 이상) 14. 다음은 기업에서 생성된 주문데이터이다. 80,009건의 데이터에
작업형 3-13	14번 문제	14. 다음은 iris 데이터 제트이다. 수어진 데이터를 이용하여 Species rpart, svm 예측 모형을 만든 후 높은 Accuracy 값	14. 다음은 기업에서 행정된 수준데이터이다. 80,009건의 데이터에 대하여 정시도착 가능 여부 예측 모델을 만들고, 평가데이터에

		을 가지는 모델의 예측값을 CSV 파일로 제출하시오.	대하여 정시도착 가능 여부 예측 확률을 기록한 CSV를 생성하시오
작업형 3-14	12번 해설	iris_sample70<-iris[c(1:nrow(iris)*0.7),]	iris_sample70<-iris[c(1: (nrow(iris)*0.7)),]
직압형 3-14(11.22)	12번 정답	0.6648607	0.6632932
직압형 3-14(11.19)	13번 정답	11	28
작업형 3-17	11번 정답	15.96071	16.05213
	11번 해설	sd_age <- Carseats %>% filter(Sales <= 5.39 & Sales >= 9.32) %>%	outlier_upper <- mean(Carseats\$Sales) + 1.5*sd(Carseats\$Sales) outlier_lower <- mean(Carseats\$Sales) - 1.5*sd(Carseats\$Sales) sd_age <- Carseats %>% filter(Sales <= outlier_upper & Sales >= outlier_lower) %>%
작업형 3-19	14번 해설	Accuracy: 0.6133	Accuracy: 0.6
	14번 정답	write.csv(pred_md, ~	write.csv(pred_loan, ~
작업형 3-20	11번 정답	54.68845	43.67211
작업형 3-21 (11.19)	11번 해설	alcgp 0-9g/day 10-19 20-29 30+ 0-39g/day 270 94 47 33 40-79 213 102 77 38 80-119 80 68 22 19 120+ 40 30 19 23	alcgp 0-9g/day 10-19 20-29 30+ 0-39g/day 261 84 42 28 40-79 179 85 62 29 80-119 61 49 16 12 120+ 24 18 12 13
		X-squared 54.68845	X-squared 43.67211
직압형 3-22(11.22)	13번 해설	2 : 41~ <mark>60</mark> 세,	2 : 41~ <mark>59</mark> 세,